Задание по геометрии - вектора.

Эта страница посвящена группе задач по геометрии, связанной с векторами, и является продолжением рассмотрения серии геометрических заданий, характерных для ЕГЭ и ОГЭ по математике.
В демонстрационных вариантах ЕГЭ 2018 года они могут встретиться под номерами 8 и 15 для базового уровня и под номером 3 для профильного уровня. Если вы не занимались другими типами этого задания, перейдите по ссылкам в конце страницы.

Внимание: Для усиления обучающего эффекта ответы и решения загружаются отдельно для каждой задачи последовательным нажатием кнопок на желтом фоне. (Когда задач много, кнопки могут появиться с задержкой. Если кнопок не видно совсем, проверьте, разрешен ли в вашем браузере JavaScript.)

Задачи на вектора.

Вектор - направленный отрезок.

Длина отрезка называется модулем вектора. Два вектора равны, если они имеют равные модули и одинаково направлены.
Вектора обозначают либо строчными латинскими буквами a, b, c ..., либо указанием концов отрезка AB, CD, MN... Чтобы отличить обозначение вектора от обозначения просто отрезка, эти символы сверху дополняются черточками или стрелочками. В печатном тексте строчные латинские буквы часто выделяют только полужирным шрифтом.

Если вектор обозначен двумя буквами (концами отрезка), то на первом месте всегда стоит начало вектора.

Задать вектор можно разными способами:
1. Графически - изобразить на координатной сетке.
2. Задать начальную и конечную точки и их координаты.
3. Задать длину отрезка и направление. Направление определяют углы с осями координат (направляющие косинусы).
4. Задать координаты вектора.

Уточним понятие координаты вектора.
Пусть вектор а на плоскости имеет начало в точке А(xA;yA) и конец в точке В(xB;yB).
Координатами вектора называются числа
a1 = xBxA и a2 = yByA.
Таким образом, вектор a имеет координаты (a1;a2).

На рисунке вектор AB имеет координаты (9;5). Обратите внимание, что эти числа фактически задают катеты прямоугольного треугольника, гипотенузой которого является отрезок АВ. Длина этих катетов не изменится, если мы переместим параллельным переносом отрезок, а с ним и весь треугольник, в другое место. Координаты вектора не зависят от его положения на плоскости, а только от длины отрезка и направления. Если направление вектора не совпадает с направлением оси координат, то соответствующая координата вектора будет равна длине катета со знаком "минус".

координаты вектора

Вектора можно складывать, вычитать, умножать на число. Для векторов также определены специальные виды умножения - скалярное произведение, результатом которого является число, и - векторное произведение, результатом которого является вектор. (Векторное произведение не входит в обязательную школьную программу по математике, но частично встречается на уроках физики, когда изучают законы индукции магнитного поля.) Операции над векторами можно производить либо координатным методом, либо графическим (правило параллелограмма, правило треугольника...). Повторите эти правила по учебнику или справочнику и выберите себе "любимое". Я привожу решение тем методом, который короче для конкретной задачи.

Для следующей группы задач чертёж в условии, вообще говоря, не обязателен. Если решать задачи координатным методом, то и в решении можно обойтись без чертежа, тем более, не нужна сетка. Однако лучше чертежи делать всегда, чтобы избежать нечаянных ошибок. А сетка помогает зрительно контролировать своё решение. Конечно, в том случае, если масштаб данных позволяет.

вектор AC

Задача 1

Две стороны прямоугольника ABCD равны 6 и 8.
Найдите длину вектора AC.

Решение

Длина вектора AC равна длине отрезка AC, который является гипотенузой прямоугольного треугольника ABC с известными катетами.
AC2 = AB2 + BC2 = 82 + 62 = 64 + 36 = 100; AC = 10.

Ответ: 10

вектор суммы

Задача 2

Две стороны прямоугольника ABCD равны 6 и 8.
Найдите длину суммы векторов AB и AD.

Решение

вектор суммы - решение

По правилу параллелограмма: сумма векторов совпадает с диагональю параллелограмма, проходящей через точку, в которой совмещены начала векторов-слагаемых; начало вектора-суммы находится в точке начала обоих векторов. На рисунке это вектор AC. Его длину мы находили в предыдущей задаче:
AC2 = AB2 + BC2 = 82 + 62 = 64 + 36 = 100; AC = 10.

Ответ: 10

вектор разности

Задача 3

Две стороны прямоугольника ABCD равны 6 и 8.
Найдите длину разности векторов AB и AD.

Решение

вектор разности решениеПо правилу параллелограмма: разность векторов совпадает с другой диагональю параллелограмма (соединяющей концы векторов-слагаемых, если их начала совмещены в одной точке); вектор разности направлен от вычитаемого к уменьшаемому. На рисунке это вектор DB, направлен от D к B, так как я нахожу разность ABAD.
DB2 = AB2 + AD2 = 82 + 62 = 64 + 36 = 100; DB = 10.

Ответ: 10

Замечание: Ответы совпали, потому что дан один и тот же прямоугольник, а диагонали в прямоугольнике, как известно, равны.

векторы

Задача 4

Две стороны прямоугольника ABCD равны 6 и 8.
Найдите скалярное произведение векторов AB и AD.

Решение

Скалярное произведение двух векторов a и b находится по любой из двух формул.
1) Через координаты по формуле (a,b) = a1·b1 + a2·b2
2) Через длины векторов и угол между ними по формуле (a,b) = |a|·|b|·cosα

Способ I.
Координаты вектора AB равны (8;0), вектора AD равны (0;6).
Значит (AB,AD) = 8·0 + 0·6 = 0.
Способ II.
|AB| = AB = 8, |AD| = AD = 6, cosα = cos∠DAB = cos90° = 0.
Значит (AB,AD) = |AB|·|AD|·cos∠DAB = 8·6·0 = 0.

Ответ: 0

Замечание: Есть несколько способов обозначения скалярного произведения. Можно со скобками (a,b) или без них a·b _ _ , как обычное умножение.

вектор суммы 2

Задача 5

Две стороны прямоугольника ABCD равны 6 и 8.
Диагонали пересекаются в точке O. Найдите длину суммы векторов AO и BO.

Решение

Вспомним, что диагонали прямоугольника пересекаются в его центре и в точке пересечения делятся пополам.

Способ I.
Координаты вектора AO равны (4;3), обе положительны, потому что вектор направлен вверх, как ось Oy и вправо, как ось Ox. Координаты вектора BO равны (-4;3), вектор направлен вверх, как ось Oy, но влево, противоположно оси Ox. Чтобы найти сумму векторов, воспользуемся тем, что при сложении векторов их соответствующие координаты складываются. Пусть вектор s(s1;s2) - сумма, тогда s1 = 4 + (- 4) = 4 - 4 = 0; s2 = 3 + 3 = 6. Квадрат длины вектора |s|2 = s12 + s22 = 02 + 62 = 36;
длина вектора |s| = 6.

Способ II.
вектор суммы решение 2Чтобы решить задачу графически, надо применить к одному или к обоим векторам параллельный перенос. Для применения правила параллелограмма надо сместить их так, чтобы обе начальные точки совпали. Для применения правила треугольника надо начало одного из векторов-слагаемых совместить с концом другого. Здесь сместили вектор BO вдоль линии ВD. На рисунке показан результат графического сложения - это вектор AD. Как видно непосредственно по рисунку, его длина равна 6.

Ответ: 6

вектор разности 2

Задача 6

Две стороны прямоугольника ABCD равны 6 и 8.
Диагонали пересекаются в точке O. Найдите длину разности векторов AO и BO.

Решение

'Способ I.
Координаты вектора AO равны (4;3), вектора BO равны (-4;3). Чтобы найти разность векторов, нужно найти разность их соответствующих координат. Пусть вектор d(d1;d2) - разность, тогда d1 = 4 - (- 4) = 4 + 4 = 8; d2 = 3 - 3 = 0. Квадрат длины вектора |d|2 = d12 + d22 = 82 + 02 = 64; длина вектора |d| = 8.

Способ II.
вектор разности решение 2Чтобы решить задачу графически, совмещаем начала векторов параллельным переносом обоих векторов вдоль диагоналей прямоугольника. На рисунке показан результат графического вычитания - это вектор . Как видно непосредственно по рисунку, его длина равна 8.

Ответ: 8

Продолжить и повторить решение типовых задач ЕГЭ по математике на темы:

  • Задачи на формулы площади.
  • Задачи на площадь фигуры на клетчатой бумаге.
  • Задачи на площадь фигуры на координатной плоскости.
  • Задачи на понятие координатной плоскости.
  • Задачи на вектора.



  • Перейдите по стрелке, чтобы найти ссылки на другие задачи ЕГЭ 2018.